1. <em id="s7dt1"></em>

    2. 好身材主动上位叫声,欧美在线导航,韩国无码无遮挡在线观看,国产精品久久久久9999无码,精品一区二区av天堂,一级毛片免费不卡在线视频,中文字幕有码在线第十页,久久久精品456亚洲影院
      撥號(hào)18861759551

      你的位置:首頁 > 產(chǎn)品展示 > 光學(xué)儀器 > 光電探測(cè) >Newport Nirvana™ 自動(dòng)平衡光接收器

      產(chǎn)品詳細(xì)頁
      Newport Nirvana™ 自動(dòng)平衡光接收器

      Newport Nirvana™ 自動(dòng)平衡光接收器

      • 產(chǎn)品型號(hào):
      • 更新時(shí)間:2024-04-18
      • 產(chǎn)品介紹:為了消除與手動(dòng)平衡參考和信號(hào)光束相關(guān)的問題,Newport Nirvana™ 自動(dòng)平衡光接收器具有內(nèi)置的低頻反饋回路,可控制其中一個(gè)接收器的電子增益,并保持信號(hào)臂和參考臂之間的自動(dòng)平衡。您可以有效消除激光強(qiáng)度噪聲,并且在不使用鎖相放大器和光學(xué)斬波器的情況下進(jìn)行限制散粒噪聲的測(cè)量。
      • 廠商性質(zhì):經(jīng)銷商
      • 在線留言

      產(chǎn)品介紹

      品牌Newport/美國價(jià)格區(qū)間面議
      組件類別光學(xué)元件應(yīng)用領(lǐng)域電子/電池

      Newport Nirvana™ 自動(dòng)平衡光接收器

      為了消除與手動(dòng)平衡參考和信號(hào)光束相關(guān)的問題,Nirvana 自動(dòng)平衡光接收器具有內(nèi)置的低頻反饋回路,可控制其中一個(gè)接收器的電子增益,并保持信號(hào)臂和參考臂之間的自動(dòng)平衡。您可以有效消除激光強(qiáng)度噪聲,并且在不使用鎖相放大器和光學(xué)斬波器的情況下進(jìn)行限制散粒噪聲的測(cè)量。

      可將共模噪聲降低 50 dB

      保持參考臂和信號(hào)臂之間的自動(dòng)直流平衡

      自動(dòng)平衡或手動(dòng)平衡模式

      增益和帶寬

      非常適用于光譜分析

      Newport Nirvana™ 自動(dòng)平衡光接收器

      對(duì)比型號(hào)
      Newport Nirvana™ 自動(dòng)平衡光接收器1837 GHz Nirvana 自動(dòng)平衡光接收器,900-1650 nm
      Newport Nirvana™ 自動(dòng)平衡光接收器2007 Nirvana 自動(dòng)平衡光接收器,400-1070 nm,125 kHz,8-32/M4
      Newport Nirvana™ 自動(dòng)平衡光接收器2017 Nirvana 自動(dòng)平衡光接收器,800-1700 nm,125 kHz,8-32/M4


      Newport Nirvana™ 自動(dòng)平衡光接收器產(chǎn)品規(guī)格


      型號(hào)Newport Nirvana™ 自動(dòng)平衡光接收器
      1837
      Newport Nirvana™ 自動(dòng)平衡光接收器
      2007
      Newport Nirvana™ 自動(dòng)平衡光接收器
      2017
      光輸入FC/APCFC and Free SpaceFC and Free Space
      探測(cè)器直徑
      2.5 mm1 mm
      探測(cè)器類型PINPINPIN
      波長范圍900-1650 nm400-1070 nm800-1700 nm
      3 dB 帶寬100 kHz to 300 MHzDC to 125 KHzDC to 125 KHz
      共模抑制25 dB50 dB50 dB
      上升時(shí)間1 ns3 µ s3 µ s
      大轉(zhuǎn)換增益30,000 V/W5.2 x 105
      V/W
      1 x 106
      V/W
      大跨阻抗增益40,000 V/A1x106
      V/A
      1x106
      V/A
      大射頻功率20 dB THD @ 100 MHz+12 dBm bei 50 Ω+12 dBm bei 50 Ω
      NEP15 pW/√Hz3 pW/√Hz3 pW/√Hz
      峰值響應(yīng)度0.75 A/W0.5 A/W1.0 A/W
      飽和功率1 mW1 mW0.5 mW
      大光功率
      4 mW4 mW
      輸出接頭SMBMale BNCMale BNC
      輸出阻抗50 Ω100 Ω100 Ω
      螺紋類型8-328-328-32


      特征

      可將共模噪聲降低 50 dB

      Nirvana 的zhuan利電路除去了參考和信號(hào)光電流,進(jìn)而消除了這兩個(gè)通道常有的噪聲信號(hào)。與單光束實(shí)驗(yàn)相比,這使您測(cè)量信號(hào)功率時(shí),對(duì)于 125 kHz 模型,噪聲減少了 50 dB;對(duì)于 1 GHz 模型,噪聲減少了 25 dB。

      Newport Nirvana™ 自動(dòng)平衡光接收器

      保持參考臂和信號(hào)臂之間的自動(dòng)直流平衡

      與傳統(tǒng)的平衡接收器不同,即便兩個(gè)探測(cè)器上的平均光強(qiáng)度不同且會(huì)隨時(shí)間變化,Nirvana 的電子增益補(bǔ)償也可自動(dòng)實(shí)現(xiàn)平衡探測(cè)。自動(dòng)平衡技術(shù)可以消除來自動(dòng)態(tài)變化系統(tǒng)中的背景噪聲,包括熱漂移和波長依賴性,實(shí)現(xiàn)參考光束和信號(hào)光束之間的*功率平衡。

      Newport Nirvana™ 自動(dòng)平衡光接收器

      400-1070 nm 或 800-1700 nm 版本

      我們提供兩個(gè) Nirvana 光接收器,涵蓋 400-1070 nm 或 800-1700 nm 光譜范圍。


      自動(dòng)平衡或手動(dòng)平衡模式

      Nirvana 光接收器可在信號(hào)模式、平衡模式或自動(dòng)平衡模式下工作。光電探測(cè)器 (A) 的輸出可以表示為 A=(IS – g x IR) x Rf。在這里,IS 是信號(hào)光電二極管電流,IR 是參考光電二極管電流,Rf 是反饋電阻的值,g 是電流分流比,用于表示參考電流有多少來自消除節(jié)點(diǎn) (Isub),有多少來自地面。在信號(hào)模式下,g 為零,沒有參考光電流來自消除節(jié)點(diǎn)。這里,輸出 A 僅僅是放大的信號(hào)電流。在平衡模式下,g 等于 1,所有參考光電流來自消除節(jié)點(diǎn)。在該模式下,A=(IS–IR)•Rf,光電探測(cè)器作為普通的平衡光接收器,如果直流光電流相等,則消除激光噪聲。在自動(dòng)平衡模式下,g 由低頻反饋回路以電子方式控制,以保持相等的直流光電流,抵消激光噪聲,而與光電流的大小無關(guān)。

      Newport Nirvana™ 自動(dòng)平衡光接收器

      The feedback loop in the Nirvana™ photoreceiver splits the reference photodetector current, IR, to generate the cancellation photocurrent, Isub. When the DC value of Isub equals the signal current, IS, the laser-amplitude noise is cancelled.

      Femtosecond Ultrasonics Application Example

      Newport Nirvana™ 自動(dòng)平衡光接收器

      The optical components of improved laser-based acoustic set-up for thin film and microstructure metrology.

      One example associated with the balanced photodetection technique is femtosecond ultrasonics wherein a femtosecond laser pulse is used to excite an acoustic wave in a material. The length of mechanical (acoustic) wave determines the resolution of ultrasound. Depending upon the materials for test, the velocity of sound, propagating through the media, has a magnitude in the order of 103
      m/s. The acoustic wavelength employed in classical ultrasonics locates at around 0.1–10 mm, depending on materials and frequencies. A growing demand of computer chip manufacturers for non-destructive testing of microstructures and thin films has pushed the wavelength scope down to 10–20 nm.

      Piezoelectric devices used for production and echo detection of acoustic waves in the macroscopic scale are too rigid in order to resolve signals within time scales of a few picoseconds and corresponding frequencies of 0.30.6 THz. In 1987, researchers at Brown University
      proposed the use of laser-generated ultrasound for film thickness measurements. The performance of the laser-based acoustic
      method has been further improved recently by means of double-frequency modulation, cross-polarization, and balanced photodetection techniques. Shown above
      is an improved pump-probe laser-based ultrasonic set-up as it is realized at the Center of Mechanics, Swiss Federal Institute of Technology in Zürich. The specimens (DUTs) consist of aluminum film
      on a sapphire substrate.

      A Ti:sapphire laser is used in this event to create short laser pulses having durations of less than 70 fs (1015
      s) and a wavelength of 810 nm at a repetition rate of 81 MHz. The laser beam is split into a pump beam (carrying 90% of the energy) and a weaker probe beam by a beamsplitter. The short pump pulse hits perpendicular to the surface of the film specimen, and is absorbed within a thin surface layer (less than 10 nm deep). A mechanical stress is generated, which then excites thermo-elastically an acoustic pulse. When the bulk wave propagates and hits a discontinuity of the acoustic impedance (note: the film substrate border represents a strong discontinuity of the acoustic impedance), an echo
      occurs which is heading back to the surface of the film. Reaching the surface, the echo causes a slight change of the optical reflectivity.

      The purpose of the probe pulse is to scan the optical reflectivity at the thin film surface versus time. Therefore, the experiments are constantly repeated at a repetition rate of 81 MHz, while the length of the optical path of the pump beam is varied. This means that the relative time shift between the pump pulse and the probe pulse is varied, and the optical reflectivity at the surface is scanned versus this relative time shift.

      Frequency Modulation Spectroscopy Application Example

      Newport Nirvana™ 自動(dòng)平衡光接收器

      Diode-laser-based trace gas sensor configuration for continuous NH3 concentration measurements at 1.53 µm.6

      In order to interrogate the spectral absorption profile of a sample (such as a noble gas),
      frequency modulation spectroscopy
      takes advantage of the change in optical absorption as a function of the frequency (wavelength) of light passed through the sample. A tunable laser can be used to generate a beam whose wavelength is time-varying. This beam is then split into two beams for balanced detection, one passing through the sample, and the other going directly into the reference photodiode. This differential measurement is the basis of FM
      spectroscopy. Since the time axis of the observed signal is directly related to the optical frequency, the observed signal can easily be couched in terms of optical frequency (hence the name frequency modulation spectroscopy). By
      using a balanced photoreceiver, any fluctuations of the laser's intensity can be directly eliminated. In addition, the small percentage fluctuations on the DC optical signal due to the time-varying absorption of the sample can be detected with greatly enhanced signal-to-noise by employing a balanced photoreceiver. Light scattering spectroscopy (LSS) detects the scattered electric field interferometrically. It is very sensitive to phase front variations in the scattered wave.



      留言框

      • 產(chǎn)品:

      • 您的單位:

      • 您的姓名:

      • 聯(lián)系電話:

      • 常用郵箱:

      • 省份:

      • 詳細(xì)地址:

      • 補(bǔ)充說明:

      • 驗(yàn)證碼:

        請(qǐng)輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

      聯(lián)系我們

      地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
      24小時(shí)在線客服,為您服務(wù)!

      版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

      在線咨詢
      QQ客服
      QQ:17041053
      電話咨詢
      0510-68836815
      關(guān)注微信
      主站蜘蛛池模板: 国产精品国产三级国产aⅴ下载| 伦理片免费完整片在线观看| 中文字幕无码不卡免费视频 | 国产成人vr精品a视频| 乳欲办公室hd| 午夜福利麻豆国产精品| 免费国产裸体美女视频全黄| 国产v综合v亚洲欧美大天堂| 韩国午夜理论A三级在线观看| 色天使综合婷婷国产日韩AV| 亚洲色无码专线精品观看| 国产亚洲欧美在线专区| 亚洲AV无码午夜嘿嘿嘿| 亚洲制服丝袜中文字幕自拍| 国产九色AV刺激露脸对白| 国产成人精品亚洲日本在线观看| 久久精品视频一二三四区| 国产亚洲av日韩精品熟女| 91麻豆精品国产大片免费看 | 狠狠五月深爱婷婷网| 免费观看美女被靠到爽的视频| 亚洲午夜未满十八勿入网站| 国产精品视频一区二区不卡| 亚洲制服丝袜一区二区三区 | 最近中文字幕mv2018在线高清| 国产乱人伦av在线无码| 亚洲日本中文字幕天天更新 | 国产精品国产三级国AV| 国产精品自在在线午夜| 国产伦一区二区三区视频| 国产午夜福利视频第三区| 成人免费av色资源日日| 五月天国产成人av免费观看| 老少配老妇老熟女中文普通话| 国产精品久久久久婷婷五月| 美女裸体黄网站18禁止免费下载 | 国产一级av在线播放| 国产成人精品日本亚洲77上位| 欧美 日韩 国产 成人 在线观看| 国产精品一区二区久久不卡| 体验区试看120秒啪啪免费|